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A compilation of experimental values of the infinite dilution partial molar Gibbs energy, enthalpy, and
heat capacity of hydration, together with molar volumes in water at 298.15 K and 0.1 MPa, is presented
for aliphatic noncyclic ketones. These data, combined with the related results for aliphatic noncyclic
hydrocarbons and monohydric alcohols, were treated in the framework of a simple first-order group
additivity scheme. Numerical values of the contributions to each of the thermodynamic properties are
obtained by the least-squares procedure for the following groups: CH3, CH2, CH, C, OH, and CO.

Introduction

Values of thermodynamic properties of organic com-
pounds in aqueous solutions at infinite dilution are needed
for many applications in chemistry, biology, medicine,
geochemistry, chemical engineering, and so forth. An
experimental study of all the variety of organic compounds
is out of the question: there are simply too many sub-
stances to make a comprehensive study possible. Instead,
group additivity methods have been used to estimate the
properties of organic species in gas, liquid, and solid phases
(see refs 1-3). In 1981, Cabani et al.4 presented an
extensive database of thermodynamic functions of hydra-
tion of organic compounds at 298.15 K and derived group
contribution values for many functional groups. Recently,
attempts5 have been made to update the database and
group contribution values for aliphatic and monoaromatic
hydrocarbons and monohydric alcohols. Here we present
the results for aliphatic noncyclic ketones.

Data Compilation

The infinite dilution partial molar functions of hydration
under consideration are the Gibbs energy, ∆hG°, the
enthalpy, ∆hH°, the heat capacity, ∆hC°p, and the volume,
V°2. The standard state adopted for gaseous species is unit
fugacity of the ideal gas at any temperature and pressure
PX ) 0.1 MPa; that for aqueous species calls for unit
activity of a hypothetical 1 m solution referenced to infinite
dilution at any temperature and pressure. The hydration
process refers to transfer of 1 mol of a solute from an ideal
gas to a standard 1 m solution. We note two main reasons
to work with the functions of hydration rather than with
the partial molar properties, like the Gibbs energy of
formation of an aqueous compound. First, functions of
hydration typically have lower uncertainties, because they
do not include the uncertainties of the enthalpy of combus-
tion measurements. Second, as discussed by Cabani et al.,4
there is a universal contribution to the properties of

aqueous species, which is seen as the nonzero intercept of
a plot of properties for a homologous series versus molec-
ular mass or number of groups. The nature of this term is
obvious for the thermodynamic functions of hydration,
where it arises as the functions of hydration of a material
point.6 This term can be calculated independently using
the thermophysical properties of pure water, thus reducing
the dimension of the fitting task.

Gibbs Energy of Hydration at 298.15 K. Literature
values of the various modifications of Henry’s law constants
and gas/water partition coefficients were recalculated to
yield equilibrium constants, K°, for a gas dissolution
reaction A(g) S A(aq), for which ∆hG° ) -RT ln K° ) -RT
ln(aPX/f), where a and f stand for the activity and fugacity,
respectively, of a solute in water, and PX is the ideal gas
standard state pressure.

Results for the infinite dilution activity coefficient of a
solute for the symmetrical normalization of activities, re-
ported as γ∞ were converted to ∆hG° values as follows (see
ref 5): ∆hG° ) -∆vapG° + RT ln γ∞ - RT ln 1000/Mw, where
Mw stands for the molecular mass of water in grams per
mole; ∆vapG° ) -RT ln(ψPs/PX), where Ps stands for the
saturated vapor pressure over the pure liquid/solid com-
pound and ψ represents the fugacity coefficient of a pure
compound, evaluated using the second virial coefficient.

The mutual solubility data were converted to ∆hG°
values as follows (see ref 5): ∆hG° ) ∆solG° - ∆vapG°, where
∆solG° ) -RT ln(msγm,s/Xsγx,s), where ms and γm,s stand for
the molality and the molal activity coefficient (for the
unsymmetrical normalization) at saturation for an organic
compound in the water-rich phase, respectively; Xs and γx,s

represent the mole fraction and the mole fraction activity
coefficient (for the symmetrical normalization) of the
organic compound in the coexisting organic-rich phase. The
UNIQUAC model7 was employed to evaluate γx,s. Values
of γm,s were estimated using the Savage and Wood8 group
contribution scheme. In the Savage-Wood formalism, ln
γm,s ) 2gxxms/RT, where gxx is the solute-solute self-
interaction coefficient, given by gxx ) Σi,j ninjGij - RTMw/
2000, where ni and nj represent the number of groups i
and j in two interacting molecules and Gij stands for the
excess Gibbs energy of an i-j interaction. To characterize
the ketone-ketone interactions, one needs GCH2-CH2 ) -34
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J‚mol-1,9 GCH2-CO ) 41 J‚mol-1, and GCO-CO ) -64 J‚mol-1;
the two later values were evaluated from the gxx values
for acetone10 and 2-butanone.11

The values of ∆hG° obtained for ketones are presented
in Table 1. Where necessary, results measured within (10-
20) K from 298.15 K were recalculated to this temperature
using the approximation that ∆hH° is constant. Results
based on mutual solubility studies are given in italics.

Values considered unreliable are given in parentheses and
were excluded from consideration.

Enthalpy and Heat Capacity of Hydration, and
Partial Molar Volume at 298.15 K and 0.1 MPa.
Calorimetric values of the standard enthalpy of solution
of a pure liquid ketone in water, ∆sH°, were converted to
∆hH° by means of ∆hH° ) ∆sH° - ∆vapH°, where ∆vapH°

Table 1. Values of the Gibbs Energies of Hydration of Ketones at 298.15 K and 0.1 MPa (See Text for Details)

compound formula ∆vapG°/kJ‚mol-1 ∆vapG°/kJ‚mol-1
accepted

value

group
contribution

value ∆/kJ‚mol-1

acetone C3H6O 2.987,a -7.89,12 -8.21,13 -8.14,14 -8.59,15 -8.01,16

-8.79,17 -8.02,18 -8.02,19 -7.93,20 -7.94,21

-8.00,22 -8.22,23 -8.29,24 -8.4325

-8.18 ( 0.30 -7.48 -0.70

2-butanone C4H8O 5.287,a (-8.75),12 -7.18,11 -7.01,16 -7.40,17

(-5.06),26 -7.11,27 -6.97,28 -6.97,29 (-5.87),19

-6.99,20 -7.28,30 -7.41,31 -7.13,21 -7.5822

-7.18 ( 0.30 -6.76 -0.42

2-pentanone C5H10O 7.607,a -6.12,32 -6.34,33 -6.19,34 -6.09,16 -6.17,35 -6.14,20

-6.42,30 -6.52,31 -6.21,36 -6.80,22 -5.9637
-6.27 ( 0.40 -6.05 -0.22

3-pentanone C5H10O 7.597,a -5.82,34 -5.83,16 -5.81,20 -6.76,31 -5.8136 -6.01 ( 0.40 -6.05 0.04
3-methyl-2-butanone C5H10O 6.637,a -5.42,34 -5.61,38 -5.56,35 -5.2936 -5.47 ( 0.30 -5.60 0.13
2-hexanone C6H12O 10.3539,a -5.67,34 -5.64,20 -5.48,30 -5.67,31 -5.8736 -5.67 ( 0.30 -5.34 -0.33
3-hexanone C6H12O 9.9239,a (0.63),40 -4.95,20 -5.1436 -5.01 ( 0.30 -5.34 0.33
4-methyl-2-pentanone C6H12O 9.1139,a -4.64,41 -4.81,34 (-2.33),26 -4.74,31 -4.9136 -4.78 ( 0.30 -4.88 0.10
2-methyl-3-pentanone C6H12O 8.8039,a -4.1236 -4.12 ( 0.60 -4.88 0.76
3-methyl-2-pentanone C6H12O 9.2439,a -5.2836 -5.28 ( 0.60 -4.88 -0.40
3,3-dimethyl-2-butanone C6H12O 7.8339,a -3.68,34 -3.83,30 -3.6336 -3.71 ( 0.40 -4.64 0.93
2-heptanone C7H14O 13.0442 -4.38,32 -4.83,34 -4.81,30 -5.45,31 -5.02,36 -4.7722 -4.88 ( 0.40 -4.63 -0.26
4-heptanone C7H14O 12.5439,a -4.5016 -4.50 ( 0.60 -4.63 0.13
2,4-dimethyl-3-pentanone C7H14O 9.7939,a -1.89,34 -2.3736 -2.13 ( 0.50 -3.72 1.59
2-octanone C8H16O 15.8442 -4.70,34 -4.28,43 -4.1122 -4.36 ( 0.40 -3.91 -0.45
2-nonanone C9H18O 18.4642 -3.53,44 -3.76,34 -2.4522 -3.25 ( 0.50 -3.20 -0.05
2,6-dimethyl-4-heptanone C9H18O 15.0739,a -0.7334 -0.73 ( 1.00 -2.29 1.56
2-undecanone C11H22O 24.2839,a -1.09,22 -2.122 -1.6 ( 0.6 -1.78 0.18

a Value from the published compilation.

Table 2. Values of the Enthalpy of Hydration of Ketones at 298.15 K and 0.1 MPa

compound formula ∆vapH°/kJ‚mol-1 ∆hH°/kJ‚mol-1
accepted

value

group
contribution

value ∆/kJ‚mol-1

acetone C3H6O 31.2745,a -41.70,46 -41.57,47 -41.44,48 -41.44,49 -41.24,50

-41.48,51 -41.1852
-41.5 ( 0.3 -40.65 -0.85

2-butanone C4H8O 34.9245,a -45.64,49 -45.4253 -45.5 ( 0.5 -44.37 -1.13
2-pentanone C5H10O 38.4645,a -48.67,49 -49.9854 -49.0 ( 0.5 -48.11 -0.89
3-pentanone C5H10O 38.6845,a -49.58,49 -49.5654 -49.6 ( 0.5 -48.11 -1.49
3-methyl-2-butanone C5H10O 36.8745,a -47.5049 -47.6 ( 1.0 -48.26 0.66
2-hexanone C6H12O 43.1545,a -52.6149 -52.6 ( 1.0 -51.86 -0.74
4-methyl-2-pentanone C6H12O 40.6545,a -50.1549 -50.2 ( 1.0 -52.00 1.80
3,3-dimethyl-2-butanone C6H12O 38.0045,a -47.5049 -47.5 ( 1.0 -51.34 3.84
2-heptanone C7H14O 47.2445,a -56.19,49 -56.8654 -56.4 ( 0.6 -55.60 -0.80
4-heptanone C7H14O 47.239,b -58.154 -58.1 ( 2.0 -55.60 -2.50
2,4-dimethyl-3-pentanone C7H14O 41.5745,a -51.2,49 -57.154 -54.0 ( 3.0 -55.88 1.88
2-nonanone C9H18O 56.4445,a -62.754 -62.7 ( 2.0 -63.08 0.38

a Recommended value from the compilation of calorimetric values of enthalpies of vaporization. b Estimated value from the temperature
dependence of the saturated vapor pressure.

Table 3. Values of the Heat Capacity of Hydration of Ketones at 298.15 K and 0.1 MPa

compound formula Cp(ig)/J‚K-1 ‚ mol-1 ∆hC°p/J‚K-1 ‚ mol-1
accepted

value

group
contribution

value ∆/J‚K-1 ‚ mol-1

acetone C3H6O 74.53 150,55 16656 158 ( 10 163 -5
2-butanone C4H8O 103.33 234,57 23358 234 ( 5 230 4
3-pentanone C5H10O 129.93 29858 298 ( 10 297 1

Table 4. Values of V°2 of Ketones in Water at 298.15 K and 0.1 MPa

compound formula V°2/cm3‚mol-1
accepted

value

group
contribution

value ∆/cm3‚mol-1

acetone C3H6O 66.92,59 66.8,60 66.92,61 67.062 66.9 ( 0.3 66.80 0.10
2-butanone C4H8O 82.44,57 82.56,63 82.52,58 82.9,60 82.562 82.5 ( 0.3 82.51 -0.01
2-pentanone C5H10O 98.060 98.0 ( 2.0 98.21 -0.21
3-pentanone C5H10O 98.0858 98.1 ( 1.0 98.21 -0.11
3-methyl-2-butanone C5H10O 95.060 95.0 ( 2.0 98.41 -3.41
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stands for the standard enthalpy of vaporization of a pure
compound. Results are presented in Table 2.

Published values of the infinite dilution partial molar
heat capacity of aqueous solutes, C°p,2, were used to calcu-
late ∆hC°p as follows: ∆hC°p ) C°p,2 - Cp(ig), where Cp(ig)
represents the heat capacity of a compound in the ideal
gas state. Results are given in Table 3.

Literature values of the infinite dilution partial molar
volumes of ketones in water are presented in Table 4.

Group Contribution Values

The values of the thermodynamic functions of hydration
of ketones at 298.15 K and 0.1 MPa were combined with
those for aliphatic noncyclic hydrocarbons and monohydric
alcohols, which were presented elsewhere.5 The first-order
group additivity scheme, in which the properties of a group
are assumed to be independent of the group’s neighbors,
was chosen to treat the data. The following groups are
necessary to represent the selected compounds: CH3, CH2,
CH, C, OH, and CO. Assuming the properties of the groups
are additive, any thermodynamic property of interest, Y,
can be estimated from Y ) Yo + Σi niYi, where ni stands
for the number of times the i-th group is present in the
compound, Yi designates the contribution to the Y property
of the i-th group, and Yo represents the values of thermo-
dynamic functions of hydration of a material point, that
is, an imaginable compound without any groups at all.
Values of Yo can be calculated independently using the
thermophysical properties of water (ref 6; for details see
ref 5). The numerical values of the group contributions
given in Table 5 were derived by a weighted least-squares
fit of the selected data set.

Our results can be compared only with those of Cabani
et al.,4 who also determined the group contribution values
for the thermodynamic functions of hydration of organic
compounds. However, direct comparison of results is sense-
less, because of different values of the Yo term accepted
here and in ref 4 (the difference is large; for instance, Yo )
1.12 cm3‚mol-1 in our method versus 13.41 cm3‚mol-1 4 for
the partial molar volumes, or -2.29 kJ‚mol-1 versus -13.87
kJ‚mol-1 in ref 4 for the partial molar enthalpies of
hydration). The latter authors treated the Yo term as an
adjustable parameter in the fit; however, we accepted it to
represent the thermodynamic functions of hydration of a
material point. In defense of our position, there is greater
theoretical clarity in our decision to choose a material point
as a limiting case of a compound without any groups at
all. In addition, our experience shows that fixing Yo at its
theoretical value results in a relatively small sacrifice in
the goodness of the fit.5 Besides, the potential extension of
group contribution methods to other temperatures, where
experimental data are not as extensive as at 298 K, will
be easier to implement with the independently known
value of Yo. Of course, the different values of Yo will
translate into different values of the group contributions

even when the identical database is used to derive them.
As every group contribution method has to reproduce data
for the hydrocarbon backbone, then the effect of the Yo

variations is larger for values of CH3, CH2, CH, and C
groups and smaller for the values of functional groups, like
CO and OH. Indeed, the value of the Gibbs energy of
hydration for the CO group obtained here, -22.68 ( 0.31
kJ‚mol-1, is close to -23.06 kJ‚mol-1, given by Cabani et
al.;4 however, these values should not be compared directly,
for reasons discussed above. An essential feature of this
work is a comprehensive update of the database for the
thermodynamic functions of hydration for ketones (see
Tables 1-4), which may be valuable for many applications
besides the determination of the group contribution values.
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